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Dynamic models for gas and water flow in pipelines
Dynamiczne modele przepływu gazu i wody w rurociągach
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Abstract
Mathematical models for transient flow of gas and water are described. The basic equations describing the transient flow of fluid 
in pipe are derived from an equation of motion, an equation of continuity and state equation. For water, mathematical models 
have been formulated based on compressible and incompressible flow theory. The simplified models for gas were obtained by 
neglecting some terms in the basic equations..

Słowa kluczowe: modele matematyczne, przepływ gazu, przepływ wody, przepływ nieustalony, przepływ  w rurociagach

Streszczenie
Omówiono modele matematyczne nieustalonego przepływu wody i gazu. Równania ogólne opisujące nieustalony przepływ płynu 
w rurze wyprowadzono na podstawie równania ciagłości, zachowania momentu oraz równania stanu. W przypadku wody modele 
sformułowano zarówno dla przypadku ścisliwego jak rownież niescisliwego. Uproszczone modele opisujace nieustalony przepływ 
gazu otrzymano pomijając niektóre człony w równaniach wyjsciowych.
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Generally, the continuity equation is expressed (Osiadacz, 1987) 
in the form:
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where:
w – is the flow velocity,
p – is the pressure of fluid,
c – is the sonic velocity,
ρ – is the density

Substituting Q = w A, we have:
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where: A – is the cross-section area of the pipe,
M – is the mass flow of fluid.
Noting that
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where:
	H – is the piezometric head at the centerline of the pipe above the 
specified datum,
g – is the acceleration due to gravity,
eq. (2) takes the form:

Introduction
	The basic equations describing the transient flow of fluid in pipes 

are derived from an equation of motion (or momentum),an equation 
of continuity and state equation. In practice the form of the mathe-
matical models varies with the assumptions made as regards the 
conditions of operation of the fluid pipes or networks. In the case 
of mathematical models for transient simulation of water networks it 
has to be decided whether the model should be based on compressi-
ble (water hammer) or incompressible (rigid column) flow theory. An 
incompressible models of flow are described by ordinary differential 
equations. Compressible models for gas and water are described by 
partial differential equations or a system of such equations. On the 
models, two contradictory constraints are imposed. It is required that 
on the one hand the description of the phenomenon be accurate, and 
on the other that it be as simple as possible so that the computatio-
nal means necessary for solving this model be reasonable. As a rule 
simplified models are sought which present a reasonable compromise 
between the accuracy of description and the costs of solution. The 
simplified models are obtained by neglecting some terms in the basic 
model as a result of a quantitive estimation of the particular elements 
of the equation for some given conditions of operation of the network.

Depending on the degree of simplification with respect to the set 
of basic equations, the equations may be linear or quite generally non-
linear. They may be parabolic or hyperbolic of the 1st or 2nd order.

2. Conservation of mass: continuity equation

	The law of conservation of mass simply states that mass may ne-
ither be created nor destroyed. Thus, the mass of the system remains 
constant.
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2.1 Sonic velocity in fluids

	The sonic velocity c the velocity of propagation of a pressure 
wave in a fluid, is expressed by many different formulas (Sharp 
(1981), Stephenson (1984), Watters (1979), Wylie, Streeter (1976). 
In (Halliwell, 1963), the following general expression for c is pre-
sented:
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where: 
ψ – is a nondimensional parameter that depends upon the elastic 
properties of the pipe:
 – (for rigid pipe ψ = 0),
K – is the bulk modulus of elasticity of a fluid,
E – is the Young's modulus of elasticity.
Since for rigid pipe ψ = 0, then, 

	           c2   =   K / 

∂
∂ ρ

∂
∂

w
x c

p
t

+ =
1 02  		        (6)

Taking into account the relation:
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Equation (8) means that the sonic velocity is related to the com-
pressibility of the fluid (dρ/dp). The density of the fluid is given by
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where:
v – volume per unit mass.
Differentiate eq. (9) to give
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 and rewrite in the form
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When ideal gases are compressed or expanded they obey the fol-
lowing equation 

	 pvk  = const.			       (12)

In equation (12), k = 1 for an isothermal change of state and  
k = κ = cp /cv.
where:
cp – is the heat capacity at constant pressure,
cv – is the heat capacity at constant volume,
κ – is the isentropic exponent.

Differentiate eq. (10) to give:
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Combine eqs. (11) and (12) to give
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d
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putting eq.(14) into eq. (8) we have

	 c2 =  k p v =  k p / ρ		         (15)

For isothermal conditions, eq. (15) becomes

	 c2 =  p / ρ			        (16)

For adiabatic conditions, eq. (15) becomes

	 c2 = κ  p  /  ρ		                      (17)

3. Newton’s second law of motion: momentum 
equation

	The known form of Newton's second law is that the force acting 
on a fluid particle or system of particles of fixed mass at a certain 
instant is equal to the rate of change of momentum of the particle 
(system of particles) at that instant. Consider only the streamline 
direction,
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where:
	Fx – is the component of the forces acting on the element of fluid in 
the direction of  motion.
According to (Osiadacz, 1987)
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The net force (in the direction of flow) consists of the algebraic 
sum of the x component of all the forces that act on the fluid within 
the control surface.

The forces are the following:
 – pressure force:
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 – shear force which is due to the friction

                       shear force  = − ρ A w f dx
D

2 2 	      (21)

 – the component of the net body force acting on the gas  within the 
control volume is

 	 F ρ  A  dx   sin α 		       (22)

where:	
f – is the Fening’s friction factor,
ρ – is the engle between the horizontal and direction x,
D – is the diameter of the pipe.

Substituting eqs. (19), (20), (21) and (22) into eq. (18) we have
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Dividing the above equation by ρ, we obtain
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Noting that H = p/(ρg), eq. (24) becomes
	

g H
x

w f
D

g w
t

w
x

∂
∂

α
∂
∂

∂
∂

− − = +2
22 sin         (25)

or

	g A H
x

Q Q
A

f
D

A g Q
t

w Q
x

∂
∂

α
∂
∂

∂
∂

− − = +
2 sin   (26)
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Therefore, the former term may be neglected.
Equation (23) can be written as:

	 ( )− − − =
∂
∂

ρ ρ α
∂
∂

ρ
p
x

w f
D

g
t

w2 2 sin                (27)

4. Mathematical models for gas

	The following assumptions are made in developing the equations 
for transient gas flow in pipeline:
•	 flow is isothermal,
•	 expansion at pipe wall may be neglected,
•	 one dimensional flow relations are used,
•	 the gas compressibility is assumed constant over the range of 

a single problem,
•	 the cross sectional area change slowly along the path of stream 

of gas,
•	 the radius of curvature of the pipe is large in comparison to dia-

meter,
•	 the shapes of velocity and temperature profile are approximately 

constant along the pipe,
•	 for one dimensional flow of gas, pressure, density, velocity and  

etc, are only functions of time and the distance along the axis  of 
the pipe.
	Generally, the transient flow of gas in a pipe is described by the 

system of equations (4) and (23), i.e.
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respectively.
	
We impose on the above equations two contradictory constra-

ints. It is required that on the one part the description on the phe-
nomenon be accurate, and on the other that it be possibly simple 
so that the computational means necessary for solving this model 
be reasonable. As a rule simplified models are sought which pre-
sent a reasonable compromise between the accuracy of description 
and the costs of solution. The simplified models are obtained by 
neglecting some terms in the basic (accurate) equation as a result of 

a quantitive estimation of the particular elements of the equation for 
some given conditions of operation of the pipeline. This means that 
the model of transient flow used for similation should be fitted to the 
given conditions of operation of the pipe. A necessary condition for 
proper selection of the model is therefore an earlier analysis of these 
conditions. Estimation of the particular terms of the equation (22) 
for given operating conditions and a given geometry of the pipe is 
given in (Osiadacz 1987). The character of the results cannot be ge-
neral. It can only be the starting point which allows the formulation 
of the hypothesis that in the case when boundary conditions do not 
change rapidly, or capacity of the pipe is relatively large, transient 
flow through the horizontal pipe can be represented by a set of the 
following equations:
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Taking into account that
	
	   M  =  ρ  w  A  =  ρ  Q  =  ρs  Qs

(where:  the subscript n refers to quantities at standard conditions of 
pressure ps0.1MPa and temperature Ts=273K) 
and p  =  c2 ρ, the above system of equations takes the form:
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In turn the system of equations (54) can be transformed into:
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Writing the second equation of eqs. (54) in the form
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Taking account of the first equation in the system (54) we get:
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Finally, the biquadratic model is obtained
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− − − = +
1 22

2

ρ
∂
∂

α
∂
∂

∂
∂

p
x

w f
D

g w
t

w
x

sin      (24)

Noting that H = p/(ρg), eq. (24) becomes
 

g H
x

w f
D

g w
t

w
x

∂
∂

α
∂
∂

∂
∂

− − = +2
22 sin         (25)

or

 g A H
x

Q Q
A

f
D

A g Q
t

w Q
x

∂
∂

α
∂
∂

∂
∂

− − = +
2 sin   (26)

 

In most transient problems for water the term ( )− − − =
∂
∂

ρ ρ α
∂
∂

ρ
p
x

w f
D

g
t

w2 2 sin  (ρw2)/ ( )− − − =
∂
∂

ρ ρ α
∂
∂

ρ
p
x

w f
D

g
t

w2 2 sin x is 
much smaller then the term ( )− − − =

∂
∂

ρ ρ α
∂
∂

ρ
p
x

w f
D

g
t

w2 2 sin (ρw)/ ( )− − − =
∂
∂

ρ ρ α
∂
∂

ρ
p
x

w f
D

g
t

w2 2 sin t.
Therefore, the former term may be neglected.
Equation (23) can be written as:

 ( )− − − =
∂
∂

ρ ρ α
∂
∂

ρ
p
x

w f
D

g
t

w2 2 sin                (27)

4. Mathematical models for gas

 The following assumptions are made in developing the equations 
for transient gas flow in pipeline:
• flow is isothermal,
• expansion at pipe wall may be neglected,
• one dimensional flow relations are used,
• the gas compressibility is assumed constant over the range of 

a single problem,
• the cross sectional area change slowly along the path of stream 

of gas,
• the radius of curvature of the pipe is large in comparison to dia-

meter,
• the shapes of velocity and temperature profile are approximately 

constant along the pipe,
• for one dimensional flow of gas, pressure, density, velocity and  

etc, are only functions of time and the distance along the axis  of 
the pipe.
 Generally, the transient flow of gas in a pipe is described by the 

system of equations (4) and (23), i.e.
 A

c
p
t

M
x2 0∂

∂
∂
∂

+ =

where:  c p= / ρ

and
 

( ) ( )∂
∂

ρ ρ α
∂
∂

ρ
∂
∂

ρ
p
x

w f
D

g
t

w
x

w+ + + + =2 22 0sin

respectively.
 
We impose on the above equations two contradictory constra-

ints. It is required that on the one part the description on the phe-
nomenon be accurate, and on the other that it be possibly simple 
so that the computational means necessary for solving this model 
be reasonable. As a rule simplified models are sought which pre-
sent a reasonable compromise between the accuracy of description 
and the costs of solution. The simplified models are obtained by 
neglecting some terms in the basic (accurate) equation as a result of 

a quantitive estimation of the particular elements of the equation for 
some given conditions of operation of the pipeline. This means that 
the model of transient flow used for similation should be fitted to the 
given conditions of operation of the pipe. A necessary condition for 
proper selection of the model is therefore an earlier analysis of these 
conditions. Estimation of the particular terms of the equation (22) 
for given operating conditions and a given geometry of the pipe is 
given in (Osiadacz 1987). The character of the results cannot be ge-
neral. It can only be the starting point which allows the formulation 
of the hypothesis that in the case when boundary conditions do not 
change rapidly, or capacity of the pipe is relatively large, transient 
flow through the horizontal pipe can be represented by a set of the 
following equations:
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Taking into account that
 
   M  =  ρ  w  A  =  ρ  Q  =  ρs  Qs

(where:  the subscript n refers to quantities at standard conditions of 
pressure ps0.1MPa and temperature Ts=273K) 
and p  =  c2 ρ, the above system of equations takes the form:
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In turn the system of equations (54) can be transformed into:
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Writing the second equation of eqs. (54) in the form
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and differentiating with respect to x we get:
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Taking account of the first equation in the system (54) we get:
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Finally, the biquadratic model is obtained
 

∂
∂

∂
∂

2 2

2

2p
x

a p
t

=
   

   
                 (56)

where:
 

α =
4

2

f Q
D A c



GAZ, WODA I TECHNIKA SANITARNA ■ LISTOPAD 2024 5

	This is a nonlinear parabolic model. If we assume that α = const, 
(this is true for the case when variations of flow through pipeline 
are small) we will get a linear equation with respect to p2. Assuming 
that Q(x,t) is averaged over length in every time interval Δt, we 
get a second order parabolic partial differential equation linear with 
respect to p2 in every time step. Using eqs. (54), we can get a linear 
model with respect to p in the following way.
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where:
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We can trasform eq. (57) to the following form:
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	                                  (58)

Substituting eq. (58) into the first of eqs. (54) we get: Assuming 
that λ1(x,t) is averaged over length in every time step Δt, we get a se-
cond order parabolic partial differential equation linear with respect 
to p in every time step. If we consider the relation
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we have 
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and finally
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Assuming that

2 22f w
D

f w
D

w w
ave

ρ
ρ β ρ≈ 





=   
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the equation
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is linearized (Osiadacz, 1987).
After linearization, the system of equations (53) takes the form:
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where:
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It was assumed that the gas velocity in a pipe varies from w1 to 
w2. After transformation, we have the linear equation of diffusion:
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(63)

	
If the changes of the gas pipeline load are rapid, it becomes ne-

cessary to provide additionally in the equation of gas motion for the 
term characterizing the inertia of the flowing gas. We should then 
consider the system of equations in the form:
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After similar linearization, second equation of (64) we can write 
in the following way:
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Next, differentiating eq.(65) with respect to t and first equation 
of (64) with respect to x, we obtain respectively:
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and
	

A
c

p
t x

M
x2

2 2

2 0∂
∂ ∂

∂
∂

+ =
			 

	                           (67)

Finally, taking into account eqs,(66) and (67), we have:
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 – second order hyperbolic equation.
	In the case of short gas pipelines or when friction is very small 

we can neglect the term (2 f ρ w2) / D if rapid load changes occur 
preserving the term ( )− − − =
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w2 2 sin t, since the damping of rapid changes 
of flow takes place only if friction forces occur. In thissituation we 
get the following system of equations:
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After transformations we get:
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 This is a nonlinear parabolic model. If we assume that α = const, 
(this is true for the case when variations of flow through pipeline 
are small) we will get a linear equation with respect to p2. Assuming 
that Q(x,t) is averaged over length in every time interval Δt, we 
get a second order parabolic partial differential equation linear with 
respect to p2 in every time step. Using eqs. (54), we can get a linear 
model with respect to p in the following way.
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We can trasform eq. (57) to the following form:
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Substituting eq. (58) into the first of eqs. (54) we get: Assuming 
that λ1(x,t) is averaged over length in every time step Δt, we get a se-
cond order parabolic partial differential equation linear with respect 
to p in every time step. If we consider the relation
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we have 
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is linearized (Osiadacz, 1987).
After linearization, the system of equations (53) takes the form:
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If the changes of the gas pipeline load are rapid, it becomes ne-

cessary to provide additionally in the equation of gas motion for the 
term characterizing the inertia of the flowing gas. We should then 
consider the system of equations in the form:

 

( )

A
c

p
t

M
x

p
x

w
t

f w
D

2

2

0

2 0

∂
∂

∂
∂

∂
∂

∂ ρ
∂

ρ

+ =

+ + =










     

(64)

After similar linearization, second equation of (64) we can write 
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Finally, taking into account eqs,(66) and (67), we have:
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i.e. a second order hyperbolic linear equation known as a wave equ-
ation. In the simplified models discussed above it was assumed that 
the gas pipeline is horizontal (ρ g sin α = 0).

This points to significant simplifications of the equations with 
respect to the basic set of equations. However, there are publications 
in which authors use more complex models, in which term ρ g sin α  
is not neglected.

5. Mathematical models for water

	Prior to developing a mathematical model for the simulation of 
transients, it has to be decided whether the model should be based 
on compressible or incompressible flow analysis. The behaviour of 
water hammer pressure-transients is governed partly by the inertia 
of the moving water and partly by the combined elasticity of the 
pipework and fluid, i.e. the water plus any free air that may be pre-
sent. Compressible-flow theory corresponds to the case in which 
both, inertia and elasticity must be considered. Incompressible flow 
theory (rigid column theory) relates to neglecting the elastic effect. 
Incompressible flow theory gives reasonable results provided that:
•	 (i) the timescale t for the important forcing conditions to change 

(e.g. a valve to shut or a pump to run down) is long compared to 
the time-scale t for a pressure-wave to treverse the system,

•	 (ii) these forcing conditions change smoothly.
	Incompressible flow theory is mathematically simpler than com-

pressible flow theory, since ordinary rather then partial differential 
equations are handled within pipe segments.

Longer timesteps are possible, since the Courant condition c Δt 
≤ Δx is no longer an obstacle: nor to the corresponding technical 
computational problems of handling short elements arise. In gene-
ral, a compressible flow theory calculation can be regarded as be-
ing made up of the corresponding incompressible flow theory result 
plus a superposed oscillation coming from the elastic effects.  This 
oscillatory part depends on the sound speed used in the calculation: 
this may be easy to predict since it depends strongly on the amount 
of free air if any present in the water. Using incompressible flow 
theory corresponds to calculating the underlying trend only.

5.1 Rigid water column theory
	Rigid water column theory corresponds to the case in which iner-

tia of the moving water and elasticity of the pipework and fluid are 
neglected. Below, two simple examples are given in each of which 
flow is described by an ordinary differential equation.

Example 1
	In Fig. 1 a simple system consisting of reservoir, pipe and valve 

is shown. If the valve is closed, the pressure in the pipe is equal to 
piezometric head H0. If the valve is opened suddenly, the pressure at 
the valve drops instantly to zero, and the fluid begins to accelerate. 
By integrating equation (27) between x = 0 and x = L, (where L is 
the length of the pipe) and multiplying by dx we get

− − − =∫ ∫ ∫ ∫
1 2

0

2

0 0 0ρ
∂
∂

α
∂
∂

p
x

dx f w
D

dx g dx w
t

dx
L L L L

sin

		
	    

 (28)

For a horizontal constant-diameter pipe, sin α = 0, and w is  
a function of time only.

The result is
	 p p f L w

D
L dw

dt
x x L= =−

− =0
22

ρ

		
				           (29)

or
	 p p f L w

g D
L
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dw
dt

1 2
22

γ γ
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				         (30)

where: γ – is a specific weight

This equation is reduced to the following form:
	

H f L w
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L
g

dw
dt0

22
− =

			 
	 		
	 	                        

(31)

The integration of eq. (31) (because the pressure head p1/γ=const 
= H0 and because p1/γ=0, for t>0)  determines the time necessary to 
accelerate the flow to a given velocity, w;

	
t L w

g H
w w
w w

=
+
−

2 0

0

0

0

log
			 

			                          (32)

where:
	 ( )w g H D f L= 0 2/

Example 2
	If the valve is open, the pressure upstream of the valve is deter-

mined by loss characteristics of the flow through the valve. This 
causes difficulties, in the case of rapid valve closure. At time t = 0, 
the velocity is w0 (the steady-state velocity). The equation characte-
rizing this problem is the following:

	

H p f L w
g D

L
g

dw
dt0

2
22

− − =
γ

	      

(33)

Since we have two dependent variables; p2 and  w, we need another 
equation which is derived from an energy equation across the valve:

	 p K w
gL

2
2

2γ
=

			 
			     	       (34)

where:
KL – is the valve loss coefficient

4.1.1 Basic equations for unsteady flow in series pipes

We can write equation (30) in the form:
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This equation can be rewritten in terms of flow Q as

	 S dQ
dt

g h R Q Q= − 	                      (36)

where:

            Q = w A,   h = H1 – H2 , S = L/A, R f L
D A

=
2

2

R and S are called the resistance and inertia respectively.
For the i-th pipe we have: 

	
S dQ

dt
g h R Q Qi

i
i i i i= −

	  		
				         (37)

If instead of a single pipe we have a chain of n pipes in series jo-
ining nodal points 1,2,...,m+1 at which the heads are H1, H2 ,...,Hm+1, 
then for each pipe

S dQ
dt

g h R Q Qi i i= −           
  

h H Hi i i= − +1

		
		           (38)

Adding these equations, it will be seen that the chain behaves 
like a single element of total resistance Rtot, and inertia Stot under 
a head difference h tot, where

                
R Rtot i
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=
=
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1         S Stot i
i
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i.e. a second order hyperbolic linear equation known as a wave equ-
ation. In the simplified models discussed above it was assumed that 
the gas pipeline is horizontal (ρ g sin α = 0).

This points to significant simplifications of the equations with 
respect to the basic set of equations. However, there are publications 
in which authors use more complex models, in which term ρ g sin α  
is not neglected.

5. Mathematical models for water

 Prior to developing a mathematical model for the simulation of 
transients, it has to be decided whether the model should be based 
on compressible or incompressible flow analysis. The behaviour of 
water hammer pressure-transients is governed partly by the inertia 
of the moving water and partly by the combined elasticity of the 
pipework and fluid, i.e. the water plus any free air that may be pre-
sent. Compressible-flow theory corresponds to the case in which 
both, inertia and elasticity must be considered. Incompressible flow 
theory (rigid column theory) relates to neglecting the elastic effect. 
Incompressible flow theory gives reasonable results provided that:
• (i) the timescale t for the important forcing conditions to change 

(e.g. a valve to shut or a pump to run down) is long compared to 
the time-scale t for a pressure-wave to treverse the system,

• (ii) these forcing conditions change smoothly.
 Incompressible flow theory is mathematically simpler than com-

pressible flow theory, since ordinary rather then partial differential 
equations are handled within pipe segments.

Longer timesteps are possible, since the Courant condition c Δt 
≤ Δx is no longer an obstacle: nor to the corresponding technical 
computational problems of handling short elements arise. In gene-
ral, a compressible flow theory calculation can be regarded as be-
ing made up of the corresponding incompressible flow theory result 
plus a superposed oscillation coming from the elastic effects.  This 
oscillatory part depends on the sound speed used in the calculation: 
this may be easy to predict since it depends strongly on the amount 
of free air if any present in the water. Using incompressible flow 
theory corresponds to calculating the underlying trend only.

5.1 Rigid water column theory
 Rigid water column theory corresponds to the case in which iner-

tia of the moving water and elasticity of the pipework and fluid are 
neglected. Below, two simple examples are given in each of which 
flow is described by an ordinary differential equation.

Example 1
 In Fig. 1 a simple system consisting of reservoir, pipe and valve 

is shown. If the valve is closed, the pressure in the pipe is equal to 
piezometric head H0. If the valve is opened suddenly, the pressure at 
the valve drops instantly to zero, and the fluid begins to accelerate. 
By integrating equation (27) between x = 0 and x = L, (where L is 
the length of the pipe) and multiplying by dx we get
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For a horizontal constant-diameter pipe, sin α = 0, and w is  
a function of time only.

The result is
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The integration of eq. (31) (because the pressure head p1/γ=const 
= H0 and because p1/γ=0, for t>0)  determines the time necessary to 
accelerate the flow to a given velocity, w;
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Example 2
 If the valve is open, the pressure upstream of the valve is deter-

mined by loss characteristics of the flow through the valve. This 
causes difficulties, in the case of rapid valve closure. At time t = 0, 
the velocity is w0 (the steady-state velocity). The equation characte-
rizing this problem is the following:
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Since we have two dependent variables; p2 and  w, we need another 
equation which is derived from an energy equation across the valve:
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where:
KL – is the valve loss coefficient

4.1.1 Basic equations for unsteady flow in series pipes

We can write equation (30) in the form:
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where:
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R and S are called the resistance and inertia respectively.
For the i-th pipe we have: 
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If instead of a single pipe we have a chain of n pipes in series jo-
ining nodal points 1,2,...,m+1 at which the heads are H1, H2 ,...,Hm+1, 
then for each pipe

S dQ
dt
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a head difference h tot, where
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4.1.2 Basic equations for unsteady flow in parallel pipes

	In the development of an equivalent pipe for a parallel pipe sys-
tem we will consider the case shown in Fig. 2.

We assume that:
	

R Q R Q R Q R Qeq eq1 1
2

2 2
2

3 3
2 2= = =

		
				         (39)

where: Q1 + Q2 + Q3 = Qeq

Substituting eq. (39) into the above expression for continuity 
gives:
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Dividing out Qeq and regrouping

1 1 1 1

1 2 3R R R Req

+ + =

		
1 1

1R Req ii

N

=
=
∑ 		

	      (41)

Now, we write a dynamic equation for each pipe:
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Because of friction loss equivalence, the left hand side of the 
above equations are equal, giving:
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Writing the equation of continuity in differential form:

	 dQ1  +  dQ2 +  dQ3  =  dQeq 		       (43)

and substituting expressions for the dynamic equation gives:
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4.2 Water hammer theory
	The fundamental equations describing the phenomenon of water 

hammer are obtained from consideration of mass and of momen-
tum, i.e. eqs. (4) and (26)
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For horizontal pipes Ag sin α = 0.
	Generally, the term w ( )− − − =
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can be neglected, but it can be accounted for in numerical solutions 
if necessary, e.g. in flexible plastic piping.

The basic differential water hammer equations including a fric-
tion term thus become:
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Omitting the friction term the equations become:
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The general solution to these equations is
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which indicates that pressure and flow changes are propagated at 
speed +c along the pipe.

4.2.1 Effect of air
	The presence of free air in pipelines can reduce the severity of 

water hammer considerably. Fox (1977) indicates that the speed of 
an elastic wave with free air is:

	
c

R
D

e R
f
p

=

+ +








1

1 1ρ

	      

(50)

where:
	
	    f1 – is the gas fraction by volume.

For large air conten

	 c g H f= / 1   	                    (51)

ts eq. (50) is reduced to the form
	
The wave speed of a liquid-gas mixture in an elastic pipe may be 

derived from application of the momentum and continuity equations 
(Tullis, Streeter and Wylie, 1976) in the following form: 
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(52)

where: subscripts Ω and a refer to properties of liquid and air re-
spectively.
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4.1.2 Basic equations for unsteady flow in parallel pipes

 In the development of an equivalent pipe for a parallel pipe sys-
tem we will consider the case shown in Fig. 2.

We assume that:
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Now, we write a dynamic equation for each pipe:
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4.2 Water hammer theory
 The fundamental equations describing the phenomenon of water 

hammer are obtained from consideration of mass and of momen-
tum, i.e. eqs. (4) and (26)

 
c

g A
Q
x

H
t

g A H
x

Q Q
A

f
D

A g Q
t

w Q
x

2

0

2

∂
∂

∂
∂

∂
∂

α
∂
∂

∂
∂

+ =

− − = +








 sin

 

For horizontal pipes Ag sin α = 0.
 Generally, the term w ( )− − − =

∂
∂

ρ ρ α
∂
∂

ρ
p
x

w f
D

g
t

w2 2 sin Q/ ( )− − − =
∂
∂

ρ ρ α
∂
∂

ρ
p
x

w f
D

g
t

w2 2 sin x is small compared with ( )− − − =
∂
∂

ρ ρ α
∂
∂

ρ
p
x

w f
D

g
t

w2 2 sin Q/ ( )− − − =
∂
∂

ρ ρ α
∂
∂

ρ
p
x

w f
D

g
t

w2 2 sin t and 
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Omitting the friction term the equations become:
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The general solution to these equations is
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which indicates that pressure and flow changes are propagated at 
speed +c along the pipe.

4.2.1 Effect of air
 The presence of free air in pipelines can reduce the severity of 

water hammer considerably. Fox (1977) indicates that the speed of 
an elastic wave with free air is:
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where:
 
    f1 – is the gas fraction by volume.

For large air conten
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ts eq. (50) is reduced to the form
 
The wave speed of a liquid-gas mixture in an elastic pipe may be 

derived from application of the momentum and continuity equations 
(Tullis, Streeter and Wylie, 1976) in the following form: 
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where: subscripts Ω and a refer to properties of liquid and air re-
spectively.
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	ρave – is the average density of the mixture expressed by the relation;
	

ρ
ρ ρ

ave
a aL L

L
=

+Ω Ω

where:	
L – is the length of the pipe
LΩ – is the length of the pipe containing a liquid
La – is the length of the pipe containing an air
C = (5/4 – μ) – for pipe supported at one end only
C = (1 – μ2) – for both ends fixed,
C = 1 – for a pipe with expansion joints
μ – is the Poisson ratio (for example for steel = 0.3)e.

REFERENCES:

[1]	  Abbott, M. B. 1979. Computational Hydraulics, Pitman, London.
[2]	 Batey, E. H., Courts, H. R. and Hannah, K.W. 1961, The Oil and Gas J. De-

cember 18:65-78.
[3]	 Carnyj, I.A.1961, Osnowy Gazowoy Dinamiki (Fundamentals of Gas Dyna-

mics), Gostoptiehizdat, Moscow. 
[4]	 Chaudhry, M.H. 1979, Applied Hydraulic Transients, Van Nostrand Reinhold 

Company, New York.
[5]	 Ewing, D.J.F. .1976,.”Analysis of Pressure-Transients Using Incompressible 

Flow Theory,” Second International Conference on Pressure Surges, London.

[6]	 Fox, J.A. 1977, “Hydraulic Analysis of Unsteady Flow in Pipe Networks”, 
Macmillan, London.

[7]	 Goldwater, M. H. , Rogers, K. and Turnbull, D. K. 1976.The PAN  Network 
Analysis Program – its Development and Use, 42 nd Autumn Meeting,  Lon-
don, Communication 1003.Guy, J. J. 1967, Computation of Unsteady Gas 
Flow in Pipe Networks. 

[8]	 Inst. Chem. Eng. Midlands Branch Conference at University of Nottingham.
[9]	 Halliwell, A.R. 1963. Jour. Hydraulics Div., Amer. Soc. Civil Engrs. No. HY4, 

July. pp. 1-21.
[10]	 Heath, M. J. and Blunt J.C.1969,  I. G. E.  Journal, April, 261-74.
[11]	 Lewandowski, A. and Pacut, A. 1978).in Simulation of Control Systems, (ed. I. 

Troch). North-Holland,  pp. 289-294.
[12]	 Osiadacz, A.J. 1987, Simulation and Analysis of Gas Networks, E.& F.N. 

Spon., London.
[13]	 Parmakian, J. 1963, Waterhammer Analysis, Dover Publications, Inc. New 

York.
[14]	 Stoner, M.A. 1960, Trans ASME, D. J. Basic Eng., 91, 331-40.
[15]	 Streeter, V.L. and Wylie, E.B. 1966. Hydraulic Transients, McGraw-Hill Book 

Company, New York.
[16]	 Taylor, T.D. Wood, N. E. and  Powers, J. E. (1962) Soc. Pet., Eng. J., 2, 297-

303.
[17]	 Tullis, J.P. and Streeter, V.L. and Wylie, E.B. 1976, Waterhammer Analysis with 

Air Release, Second International Conference on Pressure Surges, London.
[18]	 Watters, G.Z. 1979, Modern Analysis and Control of Unsteady Flow in Pipeli-

nes, Ann Arbor Science.
[19]	 Wylie, E.B. and Streeter, V.L.1983, Fluid Transients, Feb Press, Ann Arbor.

Warunki prenumeraty
„Gaz, Woda i Technika Sanitarna” na 2025 r.

Zamówienia na prenumeratę czasopism wydawanych przez Wydawnictwo SIGMA-NOT Sp. z o.o. można skła-
dać w dowolnym terminie. Mogą one obejmować dowolny okres, tzn. dotyczyć dowolnej liczby kolejnych zeszytów 
każdego czasopisma. 

Zamawiający – po dokonaniu wpłaty – może otrzymywać zaprenumerowany przez siebie tytuł począwszy od następne-
go. Zamówienia na zeszyty sprzed daty otrzymania wpłaty będą realizowane w miarę możliwości z posiadanych zapasów 
magazynowych.

Prenumerata roczna czasopism Wydawnictwa jest możliwa w trzech wariantach:
•	 PAPIEROWA ‒ czasopismo tylko w wersji papierowej (z opłatą za dostarczenie przesyłki)
•	 CYFROWA ‒ czasopismo tylko w wersji cyfrowej dostępne na Portalu Informacji Technicznej www.sigma-not.pl Prenu-

merator otrzymuje link do aktywacji konta zaprenumerowanego tytułu
•	 PLUS ‒ czasopismo w wersji papierowej (bez opłaty za dostarczenie) oraz cyfrowej, a także dostęp do archiwum zapre-

numerowanego tytułu na Portalu Informacji Technicznej www.sigma-not.pl.

Cena 1 egzemplarza w roku 2025 wynosi 38,00 zł (w tym 8% VAT). Cena prenumeraty rocznej w wersji papierowej 
z wysyłką 474,00 zł brutto. Cena prenumeraty rocznej cyfrowej 360,00 zł brutto. Cena prenumeraty rocznej PLUS 
552,00 zł brutto (papier+cyfra+archiwum). 

Prenumeratę można zamówić: 
mailem: prenumerata@sigma-not.pl, 
przez Internet: www.sigma-not.pl, 
listownie: Zakład Poligrafii i Kolportażu Wydawnictwa SIGMA-NOT, ul. Ks. J. Popiełuszki 19/21, 01-595 Warszawa
telefonicznie: 22 840 30 86 lub 22 840 35 89

8 GAZ, WODA I TECHNIKA SANITARNA ■ LISTOPAD 2024

 ρave – is the average density of the mixture expressed by the relation;
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LΩ – is the length of the pipe containing a liquid
La – is the length of the pipe containing an air
C = (5/4 – μ) – for pipe supported at one end only
C = (1 – μ2) – for both ends fixed,
C = 1 – for a pipe with expansion joints
μ – is the Poisson ratio (for example for steel = 0.3)e.
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